Skip to main content

Slack SAML authentication bypass

tl;dr  I found a severe issue in the Slack's SAML implementation that allowed me to bypass the authentication. This has now been solved by Slack.

Introduction

IMHO the rule #1 of any bug hunter (note I do not consider myself one of them since I do this really sporadically) is to have a good RSS feed list.  In the course of the last years I built a pretty decent one and I try to follow other security experts trying to "steal" some useful tricks. There are many experts in different fields of the security panorama and too many to quote them here (maybe another post). But one of the leading expert (that I follow) on SAML is by far Ioannis Kakavas. Indeed he was able in the last years to find serious vulnerability in the SAML implementation of Microsoft and Github. Usually I am more an "OAuth guy" but since both, SAML and OAuth, are nothing else that grandchildren of Kerberos learning SAML has been in my todo list for long time. The Github incident gave me the final motivation to start learning it.

Learning SAML

As said I was a kind of SAML-idiot until begin of 2017 but then I decided to learn it a little bit. Of course I started giving a look the the specification, but the best way I learn things is by doing and hopefully breaking. So I downloaded this great Burp extension called SAML Raider (great stuff, it saves so much time, you can edit any assertion on the fly).
Then I tried to look if any of the service that routinely I use are SAML compliant. It turns out that many of them are. To name some:
  • Github (but I guess Ioannis already took all the bugs there). So ping next (I actually found this funny JS Github bug giving a look into it, but not pertinent here)
  • Hackerone, I gave a try here but nada, nisba, niente, nicht, niet
  • Slack, Bingo see next section (this is probably meant for Enterprise customers)

Slack SAML authentication bypass

As said many of the service I use in my routine are SAML aware so I started to poke a bit them. The vulnerability I found is part of the class known as "confused deputy problem". I already talked about it in one of my OAuth blog post (tl;dr this is also why you never want to use OAuth implicit grant flow as authentication mechanism) and is really simple. Basically SAML assertions, between others contains an element called Audience and AudienceRestriction. Quoting Ioannis:

The Assertion also contains an AudienceRestriction element that defines that this Assertion is targeted for a specific Service Provider and cannot be used for any other Service Provider.
This means that if I present to a ServiceProvider A an assertion meant for ServiceProvider B, then the ServiceProvider A shoud reject it. 
Well between all other things I tried this very really simple attack against a Slack's SAML endpoint /sso/saml and guess what? It worked :o !!
To be more concrete I used an old and expired (yes the assertion was also expired!!) Github's Assertion I had saved somewhere in my archive that was signed for a subject different than mine (namely the username was not asanso aka me) and I presented to Slack. Slack happily accepted it and I was logged in Slack channel with the username of this old and expired Assertion that was never meant to be a Slack one!!! Wow this is scary.... Well well this look bad enough so I stopped quite immediately and open a ticket on Hackerone....

Disclosure timeline 

...here the Slack security team was simply amazing... Thanks guys


02-05-2017 - Reported the issue via Hackerone.
03-05-2017 - Slack confirmed the issue. 
26-08-2017 - Slack awarded a 3000$ bounty but still working with the affected customers in order to solve the vulnerability. Hence the ticket was kept open.
26-10-2017 - Slack closed the issue

Acknowledgement

I would like to thank the Slack security team in particular Max Feldman you guys rock, really!!

Well that's all folks. For more SAML trickery follow me on Twitter

Comments

PanickedPacman said…
Your Hackerone anchor tag is missing .com
davide said…
Hi, would you share your RSS list? I'm always interested in reading good stuff ;-)
thanks in advance

Popular posts from this blog

Critical vulnerability in JSON Web Encryption (JWE) - RFC 7516

tl;dr if you are using go-jose, node-jose, jose2go, Nimbus JOSE+JWT or jose4j with ECDH-ES please update to the latest version. RFC 7516 aka JSON Web Encryption (JWE) hence many software libraries implementing this specification used to suffer from a classic Invalid Curve Attack. This would allow an attacker to completely recover the secret key of a party using JWE with Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES), where the sender could extract receiver’s private key.

Premise
In this blog post I assume you are already knowledgeable about elliptic curves and their use in cryptography. If not Nick Sullivan's A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography or Andrea Corbellini's series Elliptic Curve Cryptography: finite fields and discrete logarithms are great starting points. Then if you further want to climb the elliptic learning curve including the related attacks you might also want to visit https://safecurves.cr.yp.to…

CSRF in Facebook/Dropbox - "Mallory added a file using Dropbox"

tl;dr  Facebook Groups offers the option to upload files directly from the Dropbox account. This integration is done using the OAuth 2.0 protocol and suffered from a variant of the classic OAuth CSRF (defined by Egor Homakov as the the Most Common OAuth2 Vulnerability),  see video below:



Introduction  Facebook Groups offers the option to upload files directly from the Dropbox account:


This will allow to surf via browser the Dropbox account 


and post a specific file to the group.  This integration is done using a variant of the OAuth 2.0 protocol seen in this blog many many times. But once more, OAuth is an access delegation protocol standardized under the IETF umbrella. A typical OAuth flow would look like:
Usually the client initiates the OAuth flow in the following way:

then after that the resource owner has authorized the client the authorization server redirects the resource owner back to the client with an authorization code:
Then the OAuth dance continues....
Facebook/Dropbox i…