Skip to main content

Top 10 OAuth 2 Implementation Vulnerabilities

Some time ago I posted a blogpost abut  Top 5 OAuth 2 Implementation Vulnerabilities.
This week I have extended the list while presenting Top X OAuth 2 Hacks at OWASP Switzerland.

This blog post (like the presentation) is just a collection of interesting attack OAuth related.

#10 The Postman Always Rings Twice 

I have introduced this 'attack' in last year post . This is for provider implementer, it is not extremely severe but, hey, is better to follow the spec. Specifically

The client MUST NOT use the authorization code  more than once.  If an authorization code is used more than once, the authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on that authorization code.

It turned out that even Facebook and Google did it wrong... :)

#9 Match Point

To all OAuth Providers be sure to follow section 4.1.3 of the spec in particular

...if the "redirect_uri" parameter was included in the initial authorization request as described in Section 4.1.1, and if included ensure that their values are identical.

Should you fail to do it, this in combination with Lassie Come Home below is game over (even for implementer that support only the Authorization Code Grant flow).

#8 Open redirect in rfc6749 

If you want to implent OAuth Authorization Server and  follow verbatim the OAuth core spec you might end up having an Open Redirect. Full story here . Interesting attack here .

#7 Native apps - Which OAuth flow ?

In a nutshell

  • It is NOT recommended that native applications use the implicit flow.
  • Native clients CAN NOT protect a client_secret unless it is configured at runtime as in the dynamic registration case (RFC 7591).
If you do not follow this suggestions then you risk this.

#6 Cross-site request forgery for OAuth Clients

Defined  the the Most Common OAuth2 Vulnerability. So do you the state anti CSRF parameter, as long as you use the right library to check and not a broken one :)

#5 Cross-site request forgery for Authorization Servers

As per any other website part is important to not forget Cross Site Request Forgery aka CSRF protection in your OAuth provider impelemtation. Some examples are:

#4 On Bearer Tokens

DO NOT  (if you can avoid) pass the access_token as a URI parameter a la

GET /resource?access_token=mF_9.B5f-4.1Jq HTTP/1.1                  
Host: server.example.com


since:

#3 The Devil Wears Prada

 If you are an OAuth client that use OAuth for authentication (do NOT). If you absolutely have to, you'd better read User Authentication with OAuth 2.0 . Specially if you are using the OAuth Implicit Grant flow (aka Client side).
More about the topic in here and here

#2 Lassie Come Home for OAuth clients

If you are building an OAuth client,  
Thou shall register a redirect_uri as much as specific as you can

#1 Lassie Come Home for Authorization Server

 ....and the winner is (again) 'Lassie Come Home'. Well this is hell of a danger.
There are way too many example of provider vulnerable to this attack. Just listing few here:

At least the mitigation for this issue is damn simple:  use exact matching against registered redirect uri to validate the redirect_uri parameter

BTW the slides are here.

<snip>
//SHAMELESS SELF ADVERTISEMENT
If you like OAuth 2.0 and/or you want to know more about it here you can find a book on OAuth that Justin Richer and myself have been writing on the subject.
https://www.manning.com/books/oauth-2-in-action

</snip>

Comments

Popular posts from this blog

Slack SAML authentication bypass

tl;dr  I found a severe issue in the Slack's SAML implementation that allowed me to bypass the authentication. This has now been solved by Slack.
Introduction IMHO the rule #1 of any bug hunter (note I do not consider myself one of them since I do this really sporadically) is to have a good RSS feed list.  In the course of the last years I built a pretty decent one and I try to follow other security experts trying to "steal" some useful tricks. There are many experts in different fields of the security panorama and too many to quote them here (maybe another post). But one of the leading expert (that I follow) on SAML is by far Ioannis Kakavas. Indeed he was able in the last years to find serious vulnerability in the SAML implementation of Microsoft and Github. Usually I am more an "OAuth guy" but since both, SAML and OAuth, are nothing else that grandchildren of Kerberos learning SAML has been in my todo list for long time. The Github incident gave me the final…

Bug bounty left over (and rant) Part III (Google and Twitter)

tl;dr in this blog post I am going to talk about some bug bounty left over with a little rant.

Here you can find bug bounty left over part I and II
Here you can find bug bounty rant part I and II
Introduction In one of my previous post I was saying that: 

"The rule #1 of any bug hunter... is to have a good RSS feed list."
Well well well allow me in this post to state rule #2 (IMHO)

"The rule #2 of any bug hunter is to DO NOT be to fussy with 'food' specifically with left over"

aka even if the most experience bug hunter was there (and it definitely was my case here, given the fact we are talking about no one less than filedescriptor) do not assume that all the vulnerabilities have been found! So if you want some examples here we go.
Part I - GoogleI have the privilege to receive from time to time Google Vulnerability Research Grant. One of the last I received had many target options to choose from, but one in particular caught my attention, namely Google Issue T…

How to try to predict the output of Micali-Schnorr Generator (MS-DRBG) knowing the factorization

The article was modified since its publication. Last update was 09/10/2017 

See  also Part II and Part III of this series

tl;dr in this post we are going to describe how to try predict the output of Micali-Schnorr Generator (MS-DRBG)  knowing the factorization of the n value. If this sounds like, "why the hell should I care?", you might want to give a look at this great post from Matthew Green about the backdoor in Dual_EC_DRBG. But In a nutshell, quoting Matthew Green : Dual_EC_DRBG is not the only asymmetric random number generator in the ANSI and ISO standards (see at the bottom).   it’s not obvious from the public literature how one would attack the generator even if one knew the factorization of the n values above. What I am NOT claiming in this post though is that there is a backdoor in one of this standard.

Introduction
The first time I heard about this problem is about couple of weeks ago via this Matthew's tweet: As a curiosity, the NSA didn’t just standardize Dua…