Skip to main content

Apple Safari SOP bypass (CVE-2015-3753)

Damien Antipa and me love browser security.
Hence we always keep up to date on what is going on this field.
Few months ago Christian Schneider blogged about Chrome SOP Bypass with SVG. We decided to poke some other browser using the same technique and the outcome was CVE-2015-3753.

The SOP-bypass for images works with Safari up to 8.0.7

We were able indeed to bypass the SOP for images served with 302 and with the data protocol (e.g. data:image/png;base64) and exfiltrate the image. You can find the detail of the issue in the mentioned blog post from Christian (our attack did not make use of the browser cache though)

Step to reproduce with Safari 8.0.7 :

Open the attacker page http://asanso.github.io/test.html username/password of the contained image are sop/sop

- click "exploit step 1" (this is just an intermediate step to load the image)
- click "exploit step 2" and appreciate the exfiltrated image in the alert message (substring) and the full one in the console (see also screenshot safari-sop.png)


The  Tainted canvases export protection seems to be broken for the combination 302 + data.

Apple released security updates for Safari 8.0.8, Safari 7.1.8, and Safari 6.2.8 and iOS 8.4.1 that address this and other issues.

Thanks goes to the Apple Product Security team.

Comments

Popular posts from this blog

Critical vulnerability in JSON Web Encryption (JWE) - RFC 7516

tl;dr if you are using go-jose, node-jose, jose2go, Nimbus JOSE+JWT or jose4j with ECDH-ES please update to the latest version. RFC 7516 aka JSON Web Encryption (JWE) hence many software libraries implementing this specification used to suffer from a classic Invalid Curve Attack. This would allow an attacker to completely recover the secret key of a party using JWE with Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES), where the sender could extract receiver’s private key.

Premise
In this blog post I assume you are already knowledgeable about elliptic curves and their use in cryptography. If not Nick Sullivan's A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography or Andrea Corbellini's series Elliptic Curve Cryptography: finite fields and discrete logarithms are great starting points. Then if you further want to climb the elliptic learning curve including the related attacks you might also want to visit https://safecurves.cr.yp.to…

Slack SAML authentication bypass

tl;dr  I found a severe issue in the Slack's SAML implementation that allowed me to bypass the authentication. This has now been solved by Slack.
Introduction IMHO the rule #1 of any bug hunter (note I do not consider myself one of them since I do this really sporadically) is to have a good RSS feed list.  In the course of the last years I built a pretty decent one and I try to follow other security experts trying to "steal" some useful tricks. There are many experts in different fields of the security panorama and too many to quote them here (maybe another post). But one of the leading expert (that I follow) on SAML is by far Ioannis Kakavas. Indeed he was able in the last years to find serious vulnerability in the SAML implementation of Microsoft and Github. Usually I am more an "OAuth guy" but since both, SAML and OAuth, are nothing else that grandchildren of Kerberos learning SAML has been in my todo list for long time. The Github incident gave me the final…

CSRF in Facebook/Dropbox - "Mallory added a file using Dropbox"

tl;dr  Facebook Groups offers the option to upload files directly from the Dropbox account. This integration is done using the OAuth 2.0 protocol and suffered from a variant of the classic OAuth CSRF (defined by Egor Homakov as the the Most Common OAuth2 Vulnerability),  see video below:



Introduction  Facebook Groups offers the option to upload files directly from the Dropbox account:


This will allow to surf via browser the Dropbox account 


and post a specific file to the group.  This integration is done using a variant of the OAuth 2.0 protocol seen in this blog many many times. But once more, OAuth is an access delegation protocol standardized under the IETF umbrella. A typical OAuth flow would look like:
Usually the client initiates the OAuth flow in the following way:

then after that the resource owner has authorized the client the authorization server redirects the resource owner back to the client with an authorization code:
Then the OAuth dance continues....
Facebook/Dropbox i…