Skip to main content

Top 5 OAuth 2 Implementation Vulnerabilities

Heya, back to my favourite topics namely OAuth .
I have previously discussed about common  OAuth 2 Implementation Vulnerabilities but now it is time (maybe) to list those and order them based on their criticality.

#5 The Postman Always Rings Twice 

I have introduced this 'attack' in last year post . This is for provider implementer, it is not extremely severe but, hey, is better to follow the spec. Specifically

The client MUST NOT use the authorization code  more than once.  If an authorization code is used more than once, the authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on that authorization code.

It turned out that even Facebook and Google did it wrong... :)

#4 Match Point

To all OAuth Providers be sure to follow section 4.1.3 of the spec in particular

...if the "redirect_uri" parameter was included in the initial authorization request as described in Section 4.1.1, and if included ensure that their values are identical.

Should you fail to do it, this in combination with Lassie Come Home below is game over (even for implementer that support only the Authorization Code Grant flow).

#3 Crossing The Line

As per any other website part is important to not forget Cross Site Request Forgery aka CSRF protection in your OAuth provider impelemtation. Some examples are:


#2 The Devil Wears Prada

 If you are an OAuth client that use OAuth for authentication (do NOT). If you absolutely have to, you'd better read User Authentication with OAuth 2.0 . Specially if you are using the OAuth Implicit Grant flow (aka Client side).
More about the topic in here and here

#1 Lassie Come Home

 ....and the winner is 'Lassie Come Home'. Well this is hell of a danger.
There are way too many example of provider vulnerable to this attack. Just listing few here:

At least the mitigation for this issue is damn simple:  use exact matching against registered redirect uri to validate the redirect_uri parameter

Comments

Popular posts from this blog

Slack SAML authentication bypass

tl;dr  I found a severe issue in the Slack's SAML implementation that allowed me to bypass the authentication. This has now been solved by Slack.
Introduction IMHO the rule #1 of any bug hunter (note I do not consider myself one of them since I do this really sporadically) is to have a good RSS feed list.  In the course of the last years I built a pretty decent one and I try to follow other security experts trying to "steal" some useful tricks. There are many experts in different fields of the security panorama and too many to quote them here (maybe another post). But one of the leading expert (that I follow) on SAML is by far Ioannis Kakavas. Indeed he was able in the last years to find serious vulnerability in the SAML implementation of Microsoft and Github. Usually I am more an "OAuth guy" but since both, SAML and OAuth, are nothing else that grandchildren of Kerberos learning SAML has been in my todo list for long time. The Github incident gave me the final…

Cross-origin brute-forcing of Github SAML and 2FA recovery codes

Yesterday while reading my Twitter stream I found this interesting article about  downloading GitHub SSO bypass codes. Same as Yasin Soliman I was invited to a Github pre-release of the organisation SAML single sign-on (SSO) private program. And same as him I found an issue in the same endpoint. So I thought to write a quick blog post about it. Github already published a tl;dr about this,



 I will try to fill the blanks here.

As mentioned by Yasin, Github offers an endpoint where privileged users can recover bypass codes. These recovery codes were accessible for download as plaintext and had the content-type as text/plain, something like:



What immediately caught my attention was that the format of the code forms (with some exceptions) a valid JavaScript file with lines in the format of XXXXX-XXXXX, ten hex digits separated by a hyphen. This is interpreted in JavaScript as the subtraction of two variables! This remember an old blog post of mine where I could possibly exfiltrate informa…

Critical vulnerability in JSON Web Encryption (JWE) - RFC 7516

tl;dr if you are using go-jose, node-jose, jose2go, Nimbus JOSE+JWT or jose4j with ECDH-ES please update to the latest version. RFC 7516 aka JSON Web Encryption (JWE) hence many software libraries implementing this specification used to suffer from a classic Invalid Curve Attack. This would allow an attacker to completely recover the secret key of a party using JWE with Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES), where the sender could extract receiver’s private key.

Premise
In this blog post I assume you are already knowledgeable about elliptic curves and their use in cryptography. If not Nick Sullivan's A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography or Andrea Corbellini's series Elliptic Curve Cryptography: finite fields and discrete logarithms are great starting points. Then if you further want to climb the elliptic learning curve including the related attacks you might also want to visit https://safecurves.cr.yp.to…