Skip to main content

Cross-origin brute-forcing of Github SAML and 2FA recovery codes

Yesterday while reading my Twitter stream I found this interesting article about  downloading GitHub SSO bypass codes. Same as Yasin Soliman I was invited to a Github pre-release of the organisation SAML single sign-on (SSO) private program. And same as him I found an issue in the same endpoint. So I thought to write a quick blog post about it.
Github already published a tl;dr about this,




 I will try to fill the blanks here.

As mentioned by Yasin, Github offers an endpoint where privileged users can recover bypass codes. These recovery codes were accessible for download as plaintext and had the content-type as text/plain , something like:




What immediately caught my attention was that the format of the code forms (with some exceptions) a valid JavaScript file with lines in the format of XXXXX-XXXXX, ten hex digits separated by a hyphen. This is interpreted in JavaScript as the subtraction of two variables! This remember an old blog post of mine where I could possibly exfiltrate information from properties file formatted in a peculiar way. And another great blog post: Plain text considered harmful: A cross-domain exploit.
So I thought I could do something similar here. It did not take long until I found the right approach.

Caveat #1: also in this case Github sets the X-Content-Type-Options: nosniff to prevent browsers from interpreting this content as valid JavaScript or other file types. But while Firefox now added support for nosniff the browser compatibility is still spotty (I am looking at you Safari!!).

But without waiting any further HERE is the live POC. The nut of the trick is to define a valueOf function for the corresponding variable:




and enumerate them all!!

Caveat #2: We are talking about enumerating/brute-forcing 5 hex digit variables that requires a considerable effort, but is far from be unfeasible. A rough calculation tells us that we need to define about 16^5 variables that are about 1048576!

Caveat #3: not all the codes are valid Javascript variable (e.g. the one starting with a number are not). For a random hexadecimal digit that's six out of sixteen, thus a 37.5% chance.

Disclosure timeline 

06-03-2017 - Reported the issue via Hackerone.
07-03-2017 - Github triaged the issue. 
16-03-2017 - Bounty awarded

Acknowledgement

I would like to thank the Github security  team, you guys rock, really!!


Well that's all folks. For more Javascript trickery follow me on Twitter.







Comments

Arbazz Hussain said…
Nice Find !

I Wonder why Safari Doesn't Support's X-Content-Sniffing Header ?

Popular posts from this blog

Billion Laugh Attack in https://sites.google.com

tl;dr https://sites.google.com suffered from a Billion Laugh Attack vulnerability that made the containerized environment to crash with a single invocation.
Introduction Few months ago I applied for a talk at a security conference titled Soyouwanna be a Bug Bounty Hunter but it was rejected :(. The reason behind it is that I have been on/off in the bug bounty business for a while as you can see here:
Funny. Found in a forgotten drawer from the time I was a bug hunter :p #facebook#bug#bountypic.twitter.com/Tt4saGZVLI — Antonio Sanso (@asanso) November 30, 2018 and I would have liked to share some of the things I have learned during these years (not necessary technical advises only). You can find a couple of these advises here:


Rule #1 of any bug hunter is to have a good RSS feed list
and here


The rule #2 of any bug hunter is to DO NOT be to fussy with 'food' specifically with "left over"
Today's rule is: The rule #3 of any bug hunter is DO LOOK at the old stuff

and…

OpenSSL Key Recovery Attack on DH small subgroups (CVE-2016-0701)

Usual Mandatory Disclaimer: IANAC (I am not a cryptographer) so I might likely end up writing a bunch of mistakes in this blog post...

tl;dr The OpenSSL 1.0.2 releases suffer from a Key Recovery Attack on DH small subgroups. This issue got assigned CVE-2016-0701 with a severity of High and OpenSSL 1.0.2 users should upgrade to 1.0.2f. If an application is using DH configured with parameters based on primes that are not "safe" or not Lim-Lee (as the one in RFC 5114) and either Static DH ciphersuites are used or DHE ciphersuites with the default OpenSSL configuration (in particular SSL_OP_SINGLE_DH_USE is not set) then is vulnerable to this attack.  It is believed that many popular applications (e.g. Apache mod_ssl) do set the  SSL_OP_SINGLE_DH_USE option and would therefore not be at risk (for DHE ciphersuites), they still might be for Static DH ciphersuites.
Introduction So if you are still here it means you wanna know more. And here is the thing. In my last blog post I was …

Top 10 OAuth 2 Implementation Vulnerabilities

Some time ago I posted a blogpost abut  Top 5 OAuth 2 Implementation Vulnerabilities.
This week I have extended the list while presenting Top X OAuth 2 Hacks at OWASP Switzerland.

This blog post (like the presentation) is just a collection of interesting attack OAuth related.

#10 The Postman Always Rings Twice  I have introduced this 'attack' in last year post . This is for provider implementer, it is not extremely severe but, hey, is better to follow the spec. Specifically

The client MUST NOT use the authorization code  more than once.  If an authorization code is used more than once, the authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on that authorization code.

It turned out that even Facebook and Googledid it wrong... :)

#9 Match Point To all OAuth Providers be sure to follow section 4.1.3 of the spec in particular

...if the "redirect_uri" parameter was included in the initial authorization requ…