Skip to main content

Small subgroup attack in Mozilla NSS

tl;dr While the TLS servers attacks has been pretty much studied and fixed (see e.g. https://www.secure-resumption.com/ and https://weakdh.org/) the situation with the TLS clients is (was) not ideal and can be improved. Here I report a Small subgroup attack for TLS clients that I performed against various browsers and reported.

Whoever reads this blog is used to read about OAuth .
For once (and maybe more in the future) let's hijack the usual topic and let's talk about my new "passion" : TLS in particular Diffie–Hellman (DH from now on).

Now, before to start I need to clarify one thing IANAC (I am not a cryptographer) so I might likely end up writing a bunch of mistakes in this blog post...

Diffie-Hellman is used in SSL/TLS, as "ephemeral Diffie-Hellman" (EDH) and it is probably going to be kill soonish (or at least is the intent of Google Chrome). FWIW I personally agree with this unless EDH implements the Negotiated Finite Field specification.

Now in the last years there were at least a couple of issue that affected EDH:
What I am going to describe here is by far less severe that the issues above.  Indeed has been rated by Mozilla NSS as security moderate and Google Chrome did not consider harmful at all (and since Adam Langley is one of the people that is on this side I got to agree with him :)  ).

But here the details:

When using TLS_DHE_RSA_WITH_AES_128_CBC_SHA Firefox/Chrome doesn't accept degenerate public key of value 0,1 and -1 since this key lead to pms that is {0,1, -1}.
This (the -1 case) is probably a consequence of CVE-2014-1491 (raised as part of the Triple Handshake Attack ).

I would refer to the classic  Diffie Hellman nomenclature
  •  p as the prime number
  • g the generator with order p-1 = q
  • y public key
  • x private key

Observation

If (p-1)/4  = 0 (mod p) then if I choose my private key x = (p-1)/4 then my public key
y = g^x will generates a prime-order subgroup of size 4.

This means that Mozilla/Chrome will agree on a pms = 1 one time out of 4.

The issue

I set up a server with

p = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084241
g = 3
q =1

and TLS_DHE_RSA_WITH_AES_128_CBC_SHA as cipher.

During the negotiation with Chrome I always choose

x= (p-1)/4 = 3351951982485649274893506249551461531869841455148098344430890360930441007518386744200468574541725856922507964546621512713438470702986642486608412251521060

and pass

y = 11130333445084706427994000041243435077443611277989851635896953056790400956946719341695219235480436483595595868058263313228038179294276393680262837344694991

Chrome/Firefox will happily "agree" on those 4 pms
  • 1
  • 2277474484857890671580024956962411050035754542602541741826608386931363073126827635106655062686466944094435990128222737625715703517670176266170811661389250
  • 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084240
  • 11130333445084706427994000041243435077443611277989851635896953056790400956946719341695219235480436483595595868058263313228038179294276393680262837344694991

Of course the "worse" one is 1 and happens to be 1 time out of 4 (according to Adam Langley though "here's nothing special about sending an odd DH value, it could equally well make its DH private key equal to 42"). So not big deal :(

Just for the record even the easier suggestion given in [1] aka

"Make sure that g^x,g^y and g^xy do not equal to 1"


 is not followed and this happens with very high probability (25%)

The Summary



[1] http://crypto.cs.mcgill.ca/~stiglic/Papers/dhfull.pdf

Comments

Rose Stearns said…
This comment has been removed by a blog administrator.

Popular posts from this blog

Billion Laugh Attack in https://sites.google.com

tl;dr https://sites.google.com suffered from a Billion Laugh Attack vulnerability that made the containerized environment to crash with a single invocation.
Introduction Few months ago I applied for a talk at a security conference titled Soyouwanna be a Bug Bounty Hunter but it was rejected :(. The reason behind it is that I have been on/off in the bug bounty business for a while as you can see here:
Funny. Found in a forgotten drawer from the time I was a bug hunter :p #facebook#bug#bountypic.twitter.com/Tt4saGZVLI — Antonio Sanso (@asanso) November 30, 2018 and I would have liked to share some of the things I have learned during these years (not necessary technical advises only). You can find a couple of these advises here:


Rule #1 of any bug hunter is to have a good RSS feed list
and here


The rule #2 of any bug hunter is to DO NOT be to fussy with 'food' specifically with "left over"
Today's rule is: The rule #3 of any bug hunter is DO LOOK at the old stuff

and…

Top 10 OAuth 2 Implementation Vulnerabilities

Some time ago I posted a blogpost abut  Top 5 OAuth 2 Implementation Vulnerabilities.
This week I have extended the list while presenting Top X OAuth 2 Hacks at OWASP Switzerland.

This blog post (like the presentation) is just a collection of interesting attack OAuth related.

#10 The Postman Always Rings Twice  I have introduced this 'attack' in last year post . This is for provider implementer, it is not extremely severe but, hey, is better to follow the spec. Specifically

The client MUST NOT use the authorization code  more than once.  If an authorization code is used more than once, the authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on that authorization code.

It turned out that even Facebook and Googledid it wrong... :)

#9 Match Point To all OAuth Providers be sure to follow section 4.1.3 of the spec in particular

...if the "redirect_uri" parameter was included in the initial authorization requ…

OpenSSL Key Recovery Attack on DH small subgroups (CVE-2016-0701)

Usual Mandatory Disclaimer: IANAC (I am not a cryptographer) so I might likely end up writing a bunch of mistakes in this blog post...

tl;dr The OpenSSL 1.0.2 releases suffer from a Key Recovery Attack on DH small subgroups. This issue got assigned CVE-2016-0701 with a severity of High and OpenSSL 1.0.2 users should upgrade to 1.0.2f. If an application is using DH configured with parameters based on primes that are not "safe" or not Lim-Lee (as the one in RFC 5114) and either Static DH ciphersuites are used or DHE ciphersuites with the default OpenSSL configuration (in particular SSL_OP_SINGLE_DH_USE is not set) then is vulnerable to this attack.  It is believed that many popular applications (e.g. Apache mod_ssl) do set the  SSL_OP_SINGLE_DH_USE option and would therefore not be at risk (for DHE ciphersuites), they still might be for Static DH ciphersuites.
Introduction So if you are still here it means you wanna know more. And here is the thing. In my last blog post I was …