Skip to main content

Top 5 OAuth 2 Implementation Vulnerabilities

Heya, back to my favourite topics namely OAuth .
I have previously discussed about common  OAuth 2 Implementation Vulnerabilities but now it is time (maybe) to list those and order them based on their criticality.

#5 The Postman Always Rings Twice 

I have introduced this 'attack' in last year post . This is for provider implementer, it is not extremely severe but, hey, is better to follow the spec. Specifically

The client MUST NOT use the authorization code  more than once.  If an authorization code is used more than once, the authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on that authorization code.

It turned out that even Facebook and Google did it wrong... :)

#4 Match Point

To all OAuth Providers be sure to follow section 4.1.3 of the spec in particular

...if the "redirect_uri" parameter was included in the initial authorization request as described in Section 4.1.1, and if included ensure that their values are identical.

Should you fail to do it, this in combination with Lassie Come Home below is game over (even for implementer that support only the Authorization Code Grant flow).

#3 Crossing The Line

As per any other website part is important to not forget Cross Site Request Forgery aka CSRF protection in your OAuth provider impelemtation. Some examples are:


#2 The Devil Wears Prada

 If you are an OAuth client that use OAuth for authentication (do NOT). If you absolutely have to, you'd better read User Authentication with OAuth 2.0 . Specially if you are using the OAuth Implicit Grant flow (aka Client side).
More about the topic in here and here

#1 Lassie Come Home

 ....and the winner is 'Lassie Come Home'. Well this is hell of a danger.
There are way too many example of provider vulnerable to this attack. Just listing few here:

At least the mitigation for this issue is damn simple:  use exact matching against registered redirect uri to validate the redirect_uri parameter

Comments

Popular posts from this blog

Slack SAML authentication bypass

tl;dr  I found a severe issue in the Slack's SAML implementation that allowed me to bypass the authentication. This has now been solved by Slack.
Introduction IMHO the rule #1 of any bug hunter (note I do not consider myself one of them since I do this really sporadically) is to have a good RSS feed list.  In the course of the last years I built a pretty decent one and I try to follow other security experts trying to "steal" some useful tricks. There are many experts in different fields of the security panorama and too many to quote them here (maybe another post). But one of the leading expert (that I follow) on SAML is by far Ioannis Kakavas. Indeed he was able in the last years to find serious vulnerability in the SAML implementation of Microsoft and Github. Usually I am more an "OAuth guy" but since both, SAML and OAuth, are nothing else that grandchildren of Kerberos learning SAML has been in my todo list for long time. The Github incident gave me the final…

Bug bounty left over (and rant) Part III (Google and Twitter)

tl;dr in this blog post I am going to talk about some bug bounty left over with a little rant.

Here you can find bug bounty left over part I and II
Here you can find bug bounty rant part I and II
Introduction In one of my previous post I was saying that: 

"The rule #1 of any bug hunter... is to have a good RSS feed list."
Well well well allow me in this post to state rule #2 (IMHO)

"The rule #2 of any bug hunter is to DO NOT be to fussy with 'food' specifically with left over"

aka even if the most experience bug hunter was there (and it definitely was my case here, given the fact we are talking about no one less than filedescriptor) do not assume that all the vulnerabilities have been found! So if you want some examples here we go.
Part I - GoogleI have the privilege to receive from time to time Google Vulnerability Research Grant. One of the last I received had many target options to choose from, but one in particular caught my attention, namely Google Issue T…

OpenSSL Key Recovery Attack on DH small subgroups (CVE-2016-0701)

Usual Mandatory Disclaimer: IANAC (I am not a cryptographer) so I might likely end up writing a bunch of mistakes in this blog post...

tl;dr The OpenSSL 1.0.2 releases suffer from a Key Recovery Attack on DH small subgroups. This issue got assigned CVE-2016-0701 with a severity of High and OpenSSL 1.0.2 users should upgrade to 1.0.2f. If an application is using DH configured with parameters based on primes that are not "safe" or not Lim-Lee (as the one in RFC 5114) and either Static DH ciphersuites are used or DHE ciphersuites with the default OpenSSL configuration (in particular SSL_OP_SINGLE_DH_USE is not set) then is vulnerable to this attack.  It is believed that many popular applications (e.g. Apache mod_ssl) do set the  SSL_OP_SINGLE_DH_USE option and would therefore not be at risk (for DHE ciphersuites), they still might be for Static DH ciphersuites.
Introduction So if you are still here it means you wanna know more. And here is the thing. In my last blog post I was …